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On the analysis of thermal stresses In viscoelastic solids*

by
Eli1 Sternberg

Brown University

1. Introduction.

The study of thermal stresses and deformations in visco-
elastic solids has, for various technological reasons, attracted
growlng attention during the past few years. This paper, which
18 devoted exclusively to solids that under 1sothermal conditions
and for infinitesimal strains exhibit linear viscoleastic behavior,
is intended to serve a dual purpose. First, an attempt 1s made
to sketch a systematlc account of relevant recent theoretical
developments; second, we hope to supply a helpful, if necessarily
incomplete, guide to avallable specific results, and to .the'
literature on the subject at hand.

The present treatment is largely confined to the quasi-
statlc analysis of thermal stresses in homogeneous and isotropic,
linear viscoelastlic media. Questions regarding inhomogeneous and
anisotropic 80lids, inertia effects, and thermo-mechanical coupl-
ing effects, are touched upon only at the end of the paper
(Section 7).

w&his paper was prepared under Contract Nonr-562(25) of Brown
University with tha Office of Naval Research in Washington, D.C.,
for the International Conference on High Temperature Structures
and Materials at Columbia University, New Ycrk, 1963.



562(25)/19 2

The first part of the paper (Sections 2,3,4) deals with
thermo-viscoelasticity theory within the assumption that the
mechanical response of the material is temperature-independent.
Since the rate processes of viscoelasticlty are known to be highly
sensitive to temperature changes, this assumption is remote from
physical reality. The theory of temperature-independent materials
would nevertheless appear to merit attention as a useful prelim-
inary to a more realistic treatment of the problem and because 1t
has in fact been taken as the basis of numerous particular
investigations.

Subsequent portions of the paper (Sections 5,6) deal
with temperature-dependent viscoelastic solids, particular emphasis
being placed on the theory of thermo-rheologically simple materials.
This theory rests on the hypothesis that a constant temperature
change of the entire solid affects its mechanical response merely
within a uniform distortion of the time scale. It should be
apparent that the smaller amount of space devoted here to the
influence of temperature-dependent response characteristics does
not reflect the relative importance of this influence but rather
the increased complexity of the problem once the temperature-
dependence of the material is taken into account.

Although throughout the following discussions some
attention is given to stress-strain relations in differential-
equation form, our primary preoccupation is with the more general
integral laws appropriate to solids with a continuous spectrum of

relaxation or retardation times. Such a preference is motivated
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by the well-known fact that the finite models governed by the
differential operator law (despite their heuristic value and
traditional popularity) provide an inadequate basis for the
description and prediction of actual viscoelastic behavior over
any appreciable range of time or frequency. This shortcoming is
even more pronounced in temperature-dependent models.

The following treatment of thermo-viscoelasticity theory
is strongly influenced by, and draws heavily on the results
obtained in, an earlier study of the isothermal theory contained
in Reference [1]. In particular, we make extensive use of the
properties of Stleltjes convolutions established in [1], which
enable us to cope economically with field histories that are dis-
continuous in time. As emphasized in [1], the algebra and
calculus of convolutionsfurnish the natural basic tool of linear
viscoelasticity theory. In contrast, an excessive reliance on
integral transforms has occaslionally tended to obscure the issues
under consideration. Some of the theoretical results included in
this paper, though elementary in character, seem to be unavailable

elsewhere. In this sense the present paper is not wholly

expository.

2. Temperature-independent mechanical response: formulatlion of
boundary-value problems.

The fundamental system of field equations governing the
quasi-static linear theory of viscoelastic s0lids, in the absence

of thermo-mechanical coupling effects, consists of the linearized



562(25)/19 . . 4

displacement-strain relations, the stress equations of equilibrium,
and the appropriate linear hereditary stress-strain law. We refer
this system of equations to rectangular cartesian coordinates Xy
and adopt the usual indicilal notation.2

Let ui(g,t),eia(g,t),dij(g,t) be the component values
of the displacement, infinitesimal strain, and stress field

3

histories at a material point with the position vector~ x and at

the time t. The displacement-strain relations then become

-l
€44 2(u1,3+u3,1), (2.1)
whereas the gtress equations of equilibrium assume the form

=0, 6, =6 (2.2)

%4,51 1" %y
provided Fi denotes the components of the body-force density field
history.

With a view toward a convenient statement of the relevart
constitutive relations for isotroplic viscoelastic sollds we intro-

duce the deviatoric components of strain and stress by means of

1 1
3% &3 -3 3%k 2 815" %y~ F Yt (23)

in which 3 18 the Kronecker delta. Next, we designate by T(E,t)

1

ﬁi,atin subscripts, unless otherwise specified, have the range of the
integers (1,2,3); summation over repeated subscripts is implied
and subscripts preceded by a comma indicate partial differentia-
tion with respect to the corresponding cartesian coordinate.

3Uhder11ned letters designate vectors.
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the local instantaneous temperature and let 'I‘° be an arbitrarily
chosen reference temperature. We then call the function @
defined by

® = T-T_ (2.%)

the temperature field history. Finally, we write a for the coef-
flclent of thermal expansion, which we shall suppose to be
constant. If instead a is a function of the temperature, all of
the succeeding considerations undergo an entirely elementary

generalization: 1n this instance one need merely replace & by

a = G(To) and (2.4) by
T(Eot)
o(x,t) = = | a(riar. (2.5)
0 To

The appropriate linear lsotropic hereditary stress-

straln relations in the form of the relsxation integral law now

appear as

By = eij*dal s Oy = (ekk-3a9)*dG . (2.6)

Here Gl and 62 designate the respective relaxation moduli in shear
and isotropic compression. These modull are at present functlons
of the time exclusively since we confine our attention to homo-
geneous solids and assume until later on that the material's
mechanical response is temperature-independent. In writing (2.6)
we have employed a notation for Stieltjes convolutions introduced
previously [1] in connection with the isothermal theory. Thus,

if £ and g aré functions of position and time, w = fxdg stands

for the function defined by the Stieltjes integral
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o(x,t) = [esg)(z,t) = [ flmt-tde(xmtn), (2.7)

tt=-00
provided this integral is meaningful.

We observe that according to (2.6), the local stress
tensor at each fixed instant 1s a 11neaf, continuous, and isotropic
functional of the entire preceding local straln and temperature
histories; moreover, this mapping of the strain and temperature
hsitories into an assoclated history of stress 1s invariant under
a translation of the time scale and has the property that the
stressés induced by a free thermal expansion vanish identically.
One can showu (under suitable regularity assumptions) that (2.6)
1s the most general stress-straln law conforming to the foregoing
requirements.

The field equations (2.1),(2.2),(2.6) must hold through-
out the space-time domain® Rx (-0, 0), 1.e. for all (x,t) such
that x 1s in the open region ® occupled by the interior of the
body and t lies in the interval (-co, ). To these field equa-
tions we may, without essential loss of generality, adjoin the
requirement that the body is originally undisturbed in the sense
of the lnitial conditions

=g, =F =6 =0 on Rx(-9,0), (2.8)

=f33%%3% "1

vy

¥ See [1], Section 2, for the corresponding result in the iso-

thermal theory.

2 We use the conventional notation A XB for the cartesian product
of a set A and a set B.
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where R stands for the closure of &, i.e. for the union of ® and
its boundary. FPFlnally, in the case of the standard mixed boundary-
value problem, the boundary conditions become

b
u =u, on le(-O0,00),

b (2.9)
S, = Sy g0y = S; on Bex(-oo,oo).

Here Bl and 32 are complementary subsets of the boundary B of R,
nJ is the outward unit normal of B, whereas ug and Sg are pre-
scribed surface displacements and surface tractions, respectively.
In the absence of an expliclt statement to the contrary,
the point sets R,Bl,B2 will henceforth be assumed to be independ-
ent of the time. Further, we shall suppose from here on that R

6

is a bounded regular region of space and that Bl,B are both

2
integrable.

The problem under consideration thus consists in deter-
mining field histories ui’eij’dij which — for given R’Bl’Ba’

known Gl,Gé,a, and prescribed Fi,e,ug,sb —— gatisfy the fleld

1
equations (2.1),(2.2),(2.3),(2.6) in @x(-00, ) and meet the
initial conditions (2.8), as well as the boundary conditions (2.9).
The temperature field history © may, in particular, be specified
as the solution of an independent heat-conduction problem.

For future economy we now adopt the following definition

of a

QBy a "regular region of space" we mean a region whose boundary
consists of a finite number of non-intersecting 'closed regular
surfaces"”, the latter term being used in the sense of Kellogg [2].



562(25)/19 8

Viscoelastic state. We say that the ordered array of field

histories [ui,e J,d J] belongs to the class of viscoelastic states

on Rx(-oc0, 00) corresponding to the data @,0,,9,F,,0, and write

[u;5¢ 44,0, ,]€VI0;,0,0,F,,0] on Rx(-0,00)  (2.10)

(a) GB(B=1,2) vanishes on (-c0,0), 1is twice continuously

differentiable on [0, ), and GB(O) > 0;

(b) “1’313’°1J’F1’9 vanish on Rx(-00,0) and are continuous on

Rx[0,0), © being once — and uy three times continuously

differentiable on Rx[0,c0);
(c) equations (2.1),(2.2),(2.3),(2.6) hold in @x(-o0, o).

If, in particular, ©=0 on RX(-, ™), we say that the state

[ui'eij’dij! is isothermal and write

[ui,e J’dijlev[ b0y, Fy ] on RX(~o00, o). (2.11)

Requirements (a),(b),(c) are evidently partly redundant
but mutually consistent. Also, the smoothness assumptions con-
tained in (a),(b) could be relaxed (especially as far as the time-
dependence is concerned) at the expense of more elaborate regular-
ity hypotheses. Such refinements would, moreover, necessitate
occasional supplementary smoothness assumptions in subsequent
theorems and would merely tend to detract from the main purpose
of the present paper.

It is essential to observe that the field histories
involved in the preceding definition of a viscoelastic state may
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evidently exhibit finite jump discontinuities at t=0. Although
such singular field histories are physically unrealistic —
particularly within the context of the quasi-static theory — they
play an important part in the theory of integration of the govern-
ing field equations because of Duhamel's principle. One of the
advantages derived from the formulation of the constitutlve
relations (2.6) in terms of Stieltjes convolutions lies in the
fact that it permits a systematic treatment of the relevant dis-
éontinuities and enables one to avoid the usual purely formal
manipulations with Dirac's delta function.

If (2.10) holds, the stress-strain law (2.6) admits the
conventional Riemann integral representation (cf. 1], Theorem 3.4),

valid for (x,t) in Rx[0, o),

t
s“(g,t) = Gl(t)g“@) + J‘ Gl(t-t')éu(gg,t')dt', ]
0
6 (Est) = Gy(6) (£ (x) - 308(x)] - (2.22)
t
+ [ ay(e-eN) e (xt?) - 398(x,0) Jatt.
o - -~/

Here, as in the sequel, f stands for the first time derivative of
a function f of position and time, whereas

2(x) = £(x,0). (2.13)

We consider next the case of an elastic solild. To this
end let h henceforth denote the Heaviside unit step function
defined by
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h(t) = 0 for ~© <t <O,

(2.14%)
h(t) =1 for 0Kt < oo,

It 1s immediate from (2.12) that for the particular choice
Gl = 2h , G2 = 3xh , (2.15)
where 4 and ¥ are constants, the stress-strain relations (2.6)

pass over into

844 = ap.eiJ » O = 3x(ekk-3a9). (2.16)

Equations (2.16), in view of (2.3), are equivalent to Hooke's law
(modified to account for thermal expansion), provided p and x are
the shear modulus and the bulk modulus of the elastic material,
respectively. This remark reveals the role of the classical

quasi-static theory of thermoelasticity as a special case of the

theory of thermo-viscoelasticlity under consideration and motivates
the followlng definition.
Quasi-static elastic state. If (2.10) holds and the relaxation

functions obey (2.15), in which p and x are (positive) constants,
we say that [ui’eij’dij] belongs to the class of quasi-static

elastic states on Rx(-oo, ) corresponding to the data Bs%,0,F, ,0,

and write
[ui’eij’didleg [l":":a:Fiae] on Rx(~oo, o). (2.17)

It is clear from the above definition that a quasi-
static elastic state which fails to vanish identically on
Rx(- oo, o0), cannot be independent of time on this entire space-

time domain. For, (2.17) implies that Uys€y 49044 must meet the
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initial conditions (2.8). Since we shall need to deal also with
purely position-dependent solutions of the fundamental field equa-
tions of thermoelasticity theorfy, we find it convenient to intro-
duce the notion of a

Stationary elastic state. We say that [ui’eij’dij] belongs to
the class of stationary elastic states on R corresponding to the

data p ,%,a,F,,0, and write
[uiaeijldijje é [P-,’n,a,Fi,e] QB R (2.18)

if:

(a) p and x are (not necessarily real) constants;

(v) Uy 5€ y 449 1.1'F1’9 are functions of position continuous on
R, © being once — and u, three times continuously differ-

entlable on R;
(¢) eauations (2.1),(2.2),(2.3),(2.16) nold in R .

The reason why we do not restrict p and x to be real
constants in the present instance will become apparent at the end
of Section 4, Meanwhile we note that (2.17) implies, for each
fixed t in (-o0,00),

[ug C-58)ae, 405000, 4( -, t) IE€ELR, %,0,7y (+,£),8(+,t) ] on R (2.19)7

so that every quasi-static elastic state on Rx(-oco, 00) may be
regarded as a one-parameter family (with time as the parameter)

of stationary elastic states on R corresponding to the same

7 If £ 18 a function of position and time defined on Rx(-oo, o0),
we write £(+,t) for the function of position defined on R that
results from the mapping f by holding the time fixed in (-oo, o).
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elastic constants and to the appropriate family of body-force and
temperature distributions., This observation reflects the fact that
the time in quasi~static elasticity theory'plays the role of a mere
parameter, whereas the quasi-static theory of viscoelasticity is
genuinely time-dependent.

We have so far based the formulation of boundary-value
problems in thermo-viscoelasticity theory upon the relaxation
integral law (2.6). On the assumption that GB(B=1,2), €40 and
Sy meet the conditions set down under (a),(b) in the definition
of a viscoelastic state, the stress-strain relations (2.6) may

be inverted. This leads ([1], Theorem 3.3) to the equivalent
creep integral law

eiJ = sij*dJl’ €k

= O *dT,+300 (2.20)

where J1 and 32 are the creep compliances in shear and isotroplc
compression, respectively. Moreover, the two pairs of response

functions GB and Jg (B=1,2) are linked by the relation
GgedJg = h on (-c0,00) (2.21)

or, using a notation adopted in [1] (Theorem 1.3) for the
"Stieltjes inverse" of a function of time,

3p = G§1 on (=00, 00). (2.22)

Equation (2.21) implies further that
0 .
GﬁJB(t) + T GB(t—t')JB(t')dt' =1 for 0 <t < oco. (2.23)
o .

The familiar physical significance of the relaxation

modulli and of the creep compliances is immediate from (2.12) and
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1ts creep counterpart. Thus

e;4 =hon RX(-c0,00) implies s,, = G, on Rx(-c0, o), (2.24)

1]
845 =h on Rx(-o0,00) 1implies ey = Jy on Rx(-o00, c0), (2.25)

Analogous interpretations apply to (}2 and J,. If f is a function
of position and time that possesses a Laplace transform with

respect to time, we write
©o

T(x,n) = &{f(x,t);n} = J £(x,t)exp(-nt)at, (2.26)
0
in which 1 designates the transform parameter. Accordingly,

supposing (3 and Jg (B=1,2) to be of exponential order as t —> ™,
one draws from (2.23) in conjunction with the convolution theorem
for the Laplace transform that
Tp(mTgln) = 35 - (B=1;2). (2.27)

We turn finally to stress-strain relations in differ-
entlal equation form,.1.e. to what is traditionally referred to
as the differential operator law of linear viscoelasticity. For
thls purpose we first make the followling notational agreements.
If £ 1s a (suitably smooth) function of position and time defined
on Rx(-oo,oo), we denote 1ts n-th partial time derivative by

f(n) = D°f (n=0,1,2,...), (2.28)
o
D being the time-derivative operator. Further, we write f(n) for

the function of position defined by

g(n)(g) = f(n)(;_,c») for x in R. (2.29)
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The differential operator law now becomes
Pl(D)BiJ = Q,l(D)eU » Po(D)oy, = QZ(D)[ekk-3a®L (2.30)

provided PS(D),QB(D) (B=1,2) are the linear differential operators

N N
P
Pg(P) = T pg 0", (D) = ggo 9,0 (B=1,2).  (2.31)

Here NB (B=1,2) is a non-negative integer and the coefficients

pﬁ-n‘qﬁ-n are constant response parameters for a given (tempera-
2 3

ture-independent) material. Moreover, we may evidently assume

that either p .. # O or qn'ﬁ #'0 when n = NB (B=1,2) so that, for
g

ip
fixed B, at least one of the operators in (2.31) has the degree
Ng. The differential equations (2.30) are to be met in gx{0, )
and must be'accompanied by the following initial conditions,

which are valid on R:

°(n r) n-r) N
nz pl ;n 1'1 = nir ql .n 1(..1 (I"=l,2,...,Nl),
) o
g(n-r) %(n-r) (n-r)
nEr Po,rik = 2 q2 N Ch - 30 (r=1,2,...,N,).

As 1s clear from an elementary extension of Theorem 4.1
in [1], equations (2.30),(2.32) are implied by (2.8) and the
relaxation integral law (2.6) or the creep integral law (2.20)
provided eiJ’did’ and © are sufficiently smooth and according as
the relaxation modull or the creep compliances exhiblt the de-
generaclies characteristic of a finite spectrum of relaxation or

retardation times. In the first case Pn;p #£ 0 for n=Nﬁ (B=1,2),
I
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whereas in the second instance ;8 #0forns= Ng (p=1,2). The
physical significance of the initial conditions (2.32) was
established in [1](Theorem 4.2) for the isothermal cased. Thus
suppose © vanishes identically and hold x fixed. Then, roughly
speaking, (2.32) are necessary and sufficient that every pair of
local histories 313(5")’ did(z,-) which vanishes on (-00,0),
satisfies (2.30) on (0, ©), and exhibits finite Jump discontinu-
ities at t=0, be the 1limit of a palr of history sequences which
vanishes on (-00,0), obeys the same stress-strain relations (2.30),
and has time derivatives of the orders entering (2.30) that are
continuous on (- oo, co0).

If an integral law (2.6) is reducible to a differential
operator law (2.30), then the Laplace transforms of the relaxation
functions exist, are necessarily rational, and are given by (([1],

Theorem 4.8)
ap(n)
%) = ey (P). (2.33)

Analogously, the reducibility of a creep integral law (2.20)

implies

Ty = B (i) (2.34)
g(n) = i@;(ﬁy (B=1,2). 2.3

Additional results concerning the transition from an integral to
a differential operator law, and vice versa, may be found in [1]

(Section 4).

° See also Boley and Weiner [3], Art. 15.6, for a related discus-

sion,
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Since materials with a finite relaxation or retardation
spectrum admit the familiar model representation in terms of
easlly visua;ized finite networks of springs and dashpots, the
bulk of the existing literature on viscoelasticity has favored
the differential operator law over stress-strain relations in
integral form. It 1s well to bear in mind, however, that such
a preference 1s not warranted on the grounds of theoretical
generality; nor is it Justifled from a practical point of view
since an adequate description of the behavior of actual visco-
elastic solids over any appreciable range of time (or frequency)
ordinarily necessitates the use of differential operators of a
comparatively high order.

3. Temperature-independent mechanical response: general implica-

tions.

We turn next to general results concerning the funda-
mental field equations and boundary-value problems discussed in
the preceding section. In this connection we shall limit our
attention to materials governed by the relaxation integral law
(2.6); analogous conclusions apply to the creep integral law
(2.20) and to the differential operator law (2.30). To facilitate
the task at hand we first establish a link between the theory of
thermo-viscoelasticity under present consideration and the corre-

sponding isothermal theory, which is supplied by the
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Body-force analogy. Suppose

[ui’ei,j’ j_J]E‘V[ 2G,,0,F, ,©] on RX(-o0, o0) (3.1)
and
u, = u: on le(-oo, ), S, = S? on BQX(-OO, ©), (3.2)

Further, let ﬁi,EiJ,B 1J,i'?_,fL be field histories defined on Rx(-co, co)

by means of

ui'—‘ui, 813=31J k)
) (3.3)
diJ = diJ + ad Je*d(}z » F, = F, - cx@,i*d(}2 .
Then
[ui’ﬁid,d JJEV[ R 2:F ]_O_Q Rx("OO: °°) (3-“')
and
~ b =
§, = u) on BX(-e0, ), § = 50 + an,@+a, on B,x(-00, ). (3.5)

Conversely, if © has the same properties as in the

definition of a viscoelastic state, then (3.3),(3.4),(3.5) imply
(3.1) and (3.2).

The truth of the foregoing theorem is readlly inferred
from the underlying definitions of viscoelastic and isothermal
viscoelastic states with the aid of a known result ([1],

Theorem 1.6) on the space differentiation of Stieltjes convolu-
tions. The theorem yields as a speclal case the well-known body-
force analogy of themoelasticityg 1f the relaxation functions
obey (2.15). Although the generalized analogy under discussion,

9 See, for example, [3], Art. 3.3.
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which reduces the mixed boundary-value problem of thermo-visco-
elasticity to the standard mixed problem in the isothermal theory,
is of no practical usefulness as far as the actual solution of
speciflc problems is concerned, its theoretical interest is con-
slderable. For, the analogy enables one to obtain economically
extensions to non-lsothermal conditions of theorems available in
the isothermal theory. We now clte some of the more important
conclusions reached in this manner.

Volterra's [4] theorem® concerning the uniqueness of
the solution to the mixed isothermal problem, in conjunction with

the body-force analogy, at once furnishes the
Uniqueness theorem. Suppose

[ui’eij"dij]EV[GI’G2’G’F1’G] on Rx(‘oo.v °°):

[u;,e;J,d;J]E?V[Gl,Gé,a,Fi,O] on Rx( -~ oo, 00), (3.6)
and let

vy = u, on Byx(-e0, ), 5, = S; on Bx(-c0,). (3.7)
Then

[ui’eij'did] = [u;,e;J,diJ] + [Wi,0,0J on Rx(-oo, °°)J (3~8)

where w, = O on RX(-c0,0) and w, represents an (infinitesimal)

rigid motion of the entire body on Rx[0,c0).

According to (a) in the definition of a viscoelastic
state, the relaxation functions entering (3.6) are required to

20 see [1], Section 8, for a slightly more general version and a
more detalled proof of Volterra's result in the special case
of an isotropic solid.
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satisfy the inequalities

8B >0 (p=1,2), _ (3.9)

i.e. must possess positive initial values. The striking fact
that no restrictions (apart from a smoothness assumption) need
be imposed on the subsequent behavior of GB in order to insure
uniqueness, wlll be made plausible shortly.

A characterization of the initial fileld distributions
appropriate to a viscoelastic state is supplied by the following
theorem, which 1s an elementary consequence of Theorem 6.1 in [1]
and of the body-force analogy.

Initial response. Let [ui,s“,o“] meet (2.10). Then

o © o o
[81:513301‘1]E&[}L,N,G,Fi,e] on R (3.10)

with

(o] 10
b=58 ,%=50,. (3.11)

1 2

o=

This result lends a preclse meaning — within the
context of thermo-viscoelasticity theory — to the familiar asser-
tion that the initial response of a viscoelastic solid is elastic.
Moreover, the preceding theorem enables one to determine directly
the initlial displacements, stresses, and strains belonging to the
solution of a mixed boundary-value problem in thermo-viscoelastic-
ity theory by solving a steady-state thermoelastic problem; the
latter 1s governed by the initlal body-force, temperature, and
surface data of the original problem, as well as by the elastic

constants (3.11). Similarly, Theorem 6.2 in [1] furnishes an
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analogous characterization of the initial (right-hand) time
derivatives of all existing orders belonging to the desired visco-~
elastic state. These initial time rates 8§n)'g§?):g§?) (n=1,2,...)
may be found directly from the corresponding initial data by
solving successively a sequence of steady-state thermoelastic
problems, each of which is governed once again by the elastic
constants defined in (3.11). Since, according to the uniqueness
theorem of the classical (uncoupled) theory of thermoelasticity,
the inequalities p > 0, x > O are sufficient to guarantee the
uniqueness of a suitably regular solution to the mixed problem,
Volterra'!s uniqueness criterion (3.9) is not so surprising.

An additional conclusion regarding the time-dependence
of viscoelastic states, that permits one to infer the smoothness
of the state with respect to time from the corresponding smooth-
ness of the field and surface data, is deducible from Theorem 6.4
in [1]. We proceed now to a theorem on the

Position-dependence of viscoelastic states. Let [uy,e,,,0,,]

meet (2.10) and assume that

V.F =0, VaF = 0, V2@ = 0 on 2 - 0, o). (3.12)11

Then throughout @x(-oco, c0),

vA(v.u) = 0, V(V~u) = O, (3.13)

v*, = o, vl*eiJ =0,

6,, = O. (3.14)

i 1]

1l Here, as in the sequel, Vv is the usual spatial gradient

operator, whereas V., V-, and V2 designate the divergence,
curl, and Laplacian operators, respectively.
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Thus 1n the present circumstances, as in thermoelasticity
theory, (3.12) imply that the dilatation and the rotation are
harmonic, whlle the cartesian components of displacement, strain,
and stress are biharmonic functions of position. It follows that
all of these fleld histories possess continuous space derivatives
of all orders.’ The above theorem is a consequence of Theorem 6.6
in [1].

The counterpart of Betti's elastostatic reciprocal rela-
tions in the isothermal theory of viscoelasticity given in [1]
(Theorem 7.4), in view of the body-force analogy, the divergence
theorem, and by virtue of Theorems 1.2, 1.6 in [1], leads to the
following

Reciprocal theorem. Suppose

[ui,ei,j’dijl e‘v[Gl’ 2,G,Fi,e] _QE RX(-OO, °°)J
1 1 1 Tt (3.15)
[uiaeijadij]GV[Gl:GeaaaFi:e ] on RX(-o00, ).

Then, on ('°°: °°):

! 1 t
L Si*duidA + £ Fi*duidV'+ a £'O*d611*d02dv =

t | 4 t
L Si*duidA + £ FiﬁduidV'+ a L e *deii*dGedV'=

1 1
L .61 Ji‘tdei JdV +a _L O*deu*dGadV =

1 1
~ £_°13*deijdv'+ a L’O *deii*dszV. (3.16)
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It should be emphasized that the reciprocal relations
obtained from the present theorem by specializing Gp (B=1,2) in
accordance with (2.15) and by setting ©=0 on Rx(-oo, co), are
distinct from the quasi-static adaptation of Betti's reciprocal
relations in lsothermal elastostatics. This distinctlon disappears
if the body force and temperature field histories, as well as the
surface data, of the two states in (3.155 are separable functions
of position and time that share a common time-dependence. In
this particular instance the convolutions entering (3.16) (e.g.
Si*du;) can be shown® to be reducible to ordinary products
(e.g. Siu;), and the resulting reciprocal relations are identical
with those arising from the extension of Bettl's theorem to quasi-
static thermoelasticity theory.

The reciprocal theorem stated above may be used to
derive formulas for the average strains induced in a (temperature-
independent) viscoelastic solid by given body-force and tempera-
ture field histories and by specifled surface tractions%3 We
include here merely a formula for the total volume change, which
can be deduced directly from Theorem 7.6 in [1] with the aild of

the body-force analogy and the divergence theorem.

12—Cf. Theorem 7.5 in [1].

13 see [5] for a derivation of analogous results in the isothermal
theory of anisotropic viscoelastic solids.
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Volume change. From (2.10) follows, for t in (-oo, o0),

AV(s) = twaz, 1(8) + 3 | O(x,t)av, (3.17)

provided J2 1s the creep compliance corresponding to the relaxa-

tion modulus G, and where

AV(t) = £ eii(g,t)dv, (3.18)

A(t) = l x,8, (x,6)a8 + l[ x,F, (x,t)av. (3.19)

It is essential to observe that (3.17) may also be
derivedlu solely from (3.18),(2.2), and the second of (2.6) by
recourse to (2.21) and Theorems 1.2, 1.6 in [1]. Consequently,

infinitesimal deformations and has a temperature-independent

linearly viscoelastic dilatational response, regardless of the

nature of its response in shear. If, in particular, Si=o on

Bx(-00,00) and F,=0 on Rx(- 0, 0), (3.17) implies
AV(t) = 3a fe(_g,t)dv for t in (-o00, ™). (3.20)
R

The same conclusion was also reached by Nowacki [7](Chapter XI) on
the basis of a less direct argument. Thus, in the absence of
surface tractions and body forces, the total volume change 1s the

same as that which would arise from uninhibited thermal expansion.

1% cee [6], where such an alternative derivation is given for the

special case of a material with a purely elastlc dilatational
response.
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This well-known result of classical thermoelasticity theory15 is
accordingly seen to survive without modification under the present
more general hypotheses.

The next theorem, which also pertains to vanishing
surface tractions and body forces, follows from the appropriate
specialization of a result established in [6] for a class of
temperature-dependent viscoelastic materials.

Stress-free temperature field histories. Assume (2.10) holds and

suppose S,=0 on Bx[0, ), F,=0 on Rx[0,00). Then °15=0 on
RX( -0, 00) if and only if

o(x,t) = a (t) + a,(t)x, for (x,t) in Rx[0,c0), (3.21)

where a ,a, are functions continuous on [0, ).
An indication of the proof of the necessity of (3.21)
1f the body is to be free from stress, appeared prior to [6] in
a note by Hilton [9]. Analogous two-dimensional theorems on
temperature distributions that fail to induce thermal stresses
(applicable to conditions of plane strain and generalized plane
stress) are also to be found in [6]. For the familiar correspond-
ing three-dimensional and two-dimensional results in thermo-
elasticity theory, which are impllied by the theorems under present
consideration, reference may be made to [3], Arts. 3.9, 4.g.
Before concluding this section we merely mentilon several

additional implications of the body-force analogy. Thus, one may

40 See, for example, [3], Art. 9.15. The result was reached by
Hieke [8], who based his proof on an extension to thermo-
elasticity theory of Betti's reciprocal relations.
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extend Duhamel's principle of the isothermal theory (see [1],
Section 5) to the analysis of thermal stresses and deformations.
Similarly, one may obtaln analogous extensions of the variational
principles of isothermal viscoelasticity theory.l® Finally, the
integral representations (in terms of Green's functions) of the
solution to isothermal boundary-value problems established in
[11] are readily generalized to include temperature effects within
the current theoretical framework.

Some further consequences of the body-force analogy
will be encountered in the succeeding sectlon, which deals with

results that have a direct bearing on the solution of boundary-

value problems of the type formulated in Section 2.

4, Temperature-independent mechanical response: methods of
integration, avallable solutions.

With a view toward alternative formulations of the
boundary-value problems stated in Section 2, we now cite the
appropriate displacement equations of equilibrium and stress
equations of compatibility, which could be arrived at by a
respective elimination of either the stresses and strains, or of
the displacements and strains, among the governing fundamental
system of field equations. Actually, these desired generallizations
of the Cauchy equations of equilibrium and of the Beltrami-Michell
equations of compatibility are immediate from their isothermal
counterparts in Theorem 5.5 and Theorem 5.7 of [1] because of the

body-force analogy.

10 See Gurtin [10] for a generalization to isothermal viscoelastic-
ity theory of the classical, and of more recent, clastostatic
variational principles.
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Displacement equations of equilibrium. From (2.10) follows, on

RX(- o0y ),

1 |
ui’JdeGl + 3 uJ,Ji*d(Gi+202) + 2F, = eae,ifdaé (4.1)

or, equivalently,
vPusdG, + %-VV-de(Gi+2Gé) + 2F = 2avexda,. (4.2)

Stress equations of compatibility. From (2.10) follows, on
@ x(~00, ),

2 1
Ve, *aT) + 3 dm,id*d(EJl-o-Ja) =0, (4.3)

where JB is the creep compliance corresponding to GB ([3=1,2) ’

¢1J = biJFk’kfdQ - (Fi,J+FJ’1)fdJl
- aby ;TP0xdG,¥a(R+) - 0B 4 4 (4.4)
and
-1 17
Q= Jl*d(Ja-Jl)*d(Jl+2Ja) . (4.5)

The mixed problem, when cast in terms of displacements
alone, consists in finding a solution of (4.1) on Rx(-co0, eo),
such that u1=0 on RX(-co ,0) and subject to the boundary conditions

= 1P
u, = u, on BlX(-oo, o),

1 1 _qb
[§(ui,d+ud’1)fd61 + 3 bijuk,kfd(ﬂé-di)-abije*daélnj =8, (4.6)

on Bax(- 00, 00) s

17 Here, as on subsequent occasions, we use the notation for the
Stieitdes inverse introduced in tl](Theorem 1.,3). of.(2.21),

(2.22).
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which follow from (2.9) by virtue of (2.1),(2.3),(2.6). On the
other hand, if R is simply connected and B,=B (surface tractions
prescribed over the entire boundary) the unknown stresses are
completely characterized by (2.2),(%4.3), and the second of the
boundary conditions (2.9).

Our next obJective 1s to exhibit a particular solution
of (4.2), corresponding to vanishing body forces and to a given
temperature field history, by generalizing the famliliar thermo-
elastlic potential, which appears to have been discovered original-
ly by Borchardt [12].

Thermo-yiscoelastic potential. Let Gg (p=1,2) and © meet condi-
tions (a) and (b) in the definition of a viscoelastic state.

Suppose © is a (sufficiently smooth) real-valued function defined

on @x(-co, ) that vanishes on Rx(-o0,0) and satisfies

V2o = 300w, %d (26, +G,) ™t (4.7)

in @%(-co, co0). Then throughout that domain the function u defined
by

u=ve (4.8)

satisfies (4.2), provided F=0 on Rx(- oo, o).
To confirm this assertion one need merely substitute
from (4.8) into (4.2), use (4.7), and invoke the algebra and

18

calculus of Stieltjes convolutions. A sultably regular solution

of the Poisson equation (%4.7) may, in turn, be generated with the

IB’For related, thou%h less explicit, particular solutions of
4.2) see Parkus [13](Chapter VI) and Nowacki [7](Chapter XI).
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ald of a Newtonian potential, as 1s apparent from Lemma 9.1 in
[1]. Indeed, if p designates the right-hand member of (4.7),

such a solution is given by

o(x,t) = - %E IJ; %(E%Q dVE for all (x,t) in Rx(-c0, o) .(4.9)
The last theorem evidently supplies yet another means of reducing
the boundary-value problem of Section 2 to a mixed problem in the
isothermal theory. Further, the present theorem, in conjunction
with Theorem 9.2 in [1], leads to the following generalization to
thermo-viscoelasticity theory of the Papkovich-Neuber stress
functions in classical elastostatics.
Generalized Papkovich-Neuber solution. Let G, (B=1,2),0,0 meet
the hypotheses of the preceding theorem and let F conform to (b)

in the definition of a viscoelastlc state. Suppose ¢ and ¢ are

(sufficiently smocth) functions defined on @x(-oo, c0), both of

which vanish on @x(- o0,0) and satisfy

2
V w B - % _x.'g 2 V% = % -I:I. 2 (u.lO)
with '
H = FedG 1ed(20,+0,)% (4.11)
H = FxdQy h+G) .

Q

» ~00,00). Then throughout that domain the function u defined

ik

u =ve + V(ptx-h)ed(G,+2G,) - Mpwd(2G,+a,) (4.12)

satisfies (4.2).
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In view of Theorem 9.4 in [1], the foregoing selution
of the displacement equations of equilibrium 1is complete in the
sense that every suitably regular solution of (4.2) admits the
representation (4.7),(4.10),(4.12). Consequently, the introduc-
tion of the displacement potentials (stress functions) 0,9, and ¥
reduces the mixed boundary-value problem to the determination of
appropriate solutions of Poisson'!s equation. On the other hand,
since ¢ and ¥ enter (4.12) under Stieltjes convolutions and
because of the structure of the second of (4.6), the application
of the boundary conditions to the generating stress functions will
ordinarily lead to a system of simultaneous integral equations.

We turn now to the well-known correspondence principle
that 1links the linear theorles of viscoelasticity and elasticilty.
This principle, which is of paramount importance to the solution
of the class of boundary-value problems with which we are con-
cerned, may — with the aid of the state definitions adopted in
Section 2 — be phrased in the following concise form.
Correspondence principle. Suppose

[ui,eiJ,d“]E”V[Gl,Ge,a,Fi,Gl on Rx( - oo, o0) | (4.13)

b b
u, = u; on BlX(-oo, ), S, =8, on Bax(-oo, ). (4.14)

Assume that Gg(t) (B=1,2),u,(x,t),e,4(x,t),F,(x,t), and 6(x,t),

for every x in R, are all of the exponential order O(exp(sot)) as
t —> oo, where 8, is a2 (real) constant. Then, for each n with

Re(n) > 8.,
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[-‘:1.1( .ln))gid( 'sﬂ):a-i‘.’( *5M) ]G&[P(ﬂ):”(ﬂ):aari( -»1),8( ';vﬂ)] on R,
(4.15)9

where

p(n) = 3 8 (n) , x(n) = 3 By(n) , (4.16)

and further

Y (n) =3, on B, T (0 =F(-,n) en B, (4.17)

The theorem just stated evidently implies that if the
solution to the thermo-viscoelastic problem governed by (4.13),
(4.14) is Laplace-transformable, it must coincide with the inverse
transform of the solution to the one-parameter family of stationary
thermoelastic boundary-value problems characterized by (4.15),
(4.16),(4.17). Accordingly the correspondence principle yields
a reduction of the original problem to one in steady-state thermo-
elasticity theory.

To confirm the principle one need merely remove the
time-dependence from the field equations and boundary conditions
appropriate to a viscoelastic state by applying the Laplace trans-
form to (2.1),(2.2),(2.3),(2.6),(2.9) and compare the resulting
system of equations with (2.1),(2.2),(2.3),(2.16), and (2.9). In
particular, since the stress-strain relations (2.6), because of
(2.8), imply (2.12), the convolution theorem for Laplace transforms
furnishes

19 Recall Footnote No. 7 and the notation for the Laplace trans-
form introduced in (2.26).
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8y4(+5n) = n8 (n)e,4(-,m),

_ (4.18)
Tpe(on) = 0B (n) (e, (+on) = 3aB(-,q) ],

which, by virtue of (2.16), account for the "elastic constants"

(4.16).

Suppose now that the formulation of the original
(thermo-viscoelastic) boundary-value problem is based on the
differential operator law (2.30) together with the initial condi-
tions (2.32), rather than on the relaxation integral law (2.6).
In this case the conclusions (4.15),(4.17) continue to hold true
(in the presence of adequate regularity assumptions on the field
histories involved), provided (4.16) are replaced by

b(n) =%§’11T(::%,n(q) --;--;?-ﬁl), (4.19)

as 1s suggested by (2.33). A direct proof of the correspondence
principle applicable to differential operator laws may be conducted
by means of an argument that is strictly analogous to the one we
have outlined for the relaxation integral law. Note, however,

that operating on (2.30) with the Laplace transform one arrives

at

- Q, (n)
BiJ(-,q) = T] 13( sN)s

Qp(n)

< (4.20)
Ekk( ’:fl) = F;G]T [‘Ekk("'q) - 335(‘:11)1

on R, for all n with a sufficlently large real part, only if the
initial conditions (2.32) are met.2C Thus (2.32), the physical

20

For details see the proof of Theorem 4.7 in [1].
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signifinance of which was discussed in Section 2, are precisely
the conditions needed to justify the usual formal application of
the Laplace transform to differential operator laws, in which
Jump discontinuities in ¢51J,.t-:1'j (and in their relevant time
derivatives) at t=0 are either tacitly ruled out or else (2.32)
are tacitly assumed to hold. This 1ssue was apparently first
recognlzed by Corneliussen and Lee [14] and was further clarified
by Boley and Weiner [3] (Article 15.6); it 1s treated rigorously
in considerable detail in [1].

The preceding analogy between boundary-value problems
in the linear theories of viscoelasticity and elasticity has its
origins in a paper by Alfrey [15]. Alfrey's form of the corre-
spondence principle, which is based on the differentlal operator
law, 1s confined to incompressible solids and to isothermal condl-
tions. A limited extension of Alfrey's analogy to compressible
solids 1s due to Tsien [16], who abandoned the assumption of
incompressibillity and postulated instead an artificial
(physically unrealistic) connection between the deviatoric and
the dilatational response of the material. Integral transforms
were first brought to bear on the question raised in [15] by
Read [17], who reduced the viscoelastic problem for a compressible
solid to an elastostatic problem with the aid of the Fourier
transform. Although the stress-strain law employed in [17]
involves only three independent differential operators, this
superfluous restriction does not affect the generality of Read's

argument. Brull [18] arrived at an analogous correspondence
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principle for a medium with a continuous spectrum of relaxation
times by means of the Laplace transform and on the basis of the
relaxation integral law; in [17] the volumetric response is
(unnecessarily) assumed to be purely elastic. Lee [19] dedueed
the counterpart of Brull's version of the correspondence principle
for the general differential operator law. Hilton, Hassan, and
Russell [20] allowed for thermal expansion within the framework of

Alfrey's analogy,21

whereas Lee's scheme was similarly extended
to themmo-viscoelasticity theory in [21]). Additional related
results will be referred to later on. We note, in passing, that
the initial conditions (2.32), which must supplement the differ-
ential operator law (2.30), are not mentioned in [15],[16],[17],
[19], and [20], while the particular initial conditions presupposed
in [21] are unduly stringent and hence misleading.

The extended correspondence principle was applied in
[21] to the solution of a particular spatial boundary-value
problem and has since been further exploited in the quasi-static
analysis of thermal stresses and deformations for linear visco-
elastic solids with temperature-independent properties. Specific
examples and pertinent references may be found in [3],[7], and
[13]. Nowacki's [7] monograph supplies a convenient.guide to
recent Polish papers on problems of the type formulated in
Section 2. Among these we cite investigations by Nowacki [22],
[23] and by Sokolowski [24]. A study by Shaffer and Levitsky [25]
should also be referred to in the present context. Additional

21 The inclusion of the thermal expansion term 1s, strictly
speaking, inconsistent with the accompanying assumption of
incompressibility.
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studies, which alm primarily at dynamic thermal effects in
temperature-independent linear viscoelastic solids, will be

mentioned in Section 7.

5. Temperature-dependent response: formulation of boundary-
value problems for thermo-rheologically simple materials.

It 18 evident from the preceding section, that the
quasi-gstatic analysis of thermal stresses and deformations within
the linear theory of homogeneous, lsotropic viscoelastic solids,
and in the absence of thermo-mechanical coupling, presents no
essential difficulties, provided the mechanical response of the
material 1s assumed to be independent of the temperature. Un-
fortunately, as was pointed out in the Introduction, such a
treatment of the problem is remote from physical reality unless
the temperature range involved 1s exceedingly small. The remainder
of this paper is chlefly concerned with the modifications arising
in the theory discussed so far if the relaxation moduli in (2.6),
the creep compliances in (2.20), and the material response
parameters in (2.30),(2.31) are themselves temperature-dependent.

The importance of effects that stem from the temperature-
dependence of the viscoelastic properties was emphasized and
1llustrated relatively early by Freudenthal [26],[27],[28],[29].
Special problems concerning temperature-dependent liﬁear viscoelas-
tic solids were also considered by Hilton, Hassan, and Russell [20],
as well as by Hilson [30], Rongwed [31], Weiner and Mechanic [32],'
Landau, Weiner, and Zwicky [33], and Aggarwale [34]. All of the
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problems treated in the publications just listed concern either
1nfinite plates or (solid or hollow) spheres and circular cylin-
ders, the fleld data and boundary conditions being such as to
preclude the presence of more than a single space coordinate.
Further, the underlying stress-strain relations correspond to
degenerate cases of the differential operator law. In fact,

the 80llds considered exhibit Maxwell, Kelvin, or Standard
Linear behavior in shear, while the volumetric response is
ordinarily taken to be either elastic or incompressible. Finally,
the temperature-dependence of the material is in all cases, with
the exception of [34], confined to the viscosity parameters and
its specific choice is usually in part a matter of analytical
expediency. Of particular interest i1s Rongved's [31] explicit
solution (in closed elementary form) for the transisnt thermal
stresses 1n an:.elastically compressible Maxwell sphere since it
accommodates an arbitrary radially symmetric temperature field
history and presupposes no restrictions upon the temperature-de-
pendence of the shear viscosity.

A systematic scheme for including the influence of
temperature on the response characteristics of a viscoelastic
80lid in the analysis of thermal streases was initiated by
Morland and Lee [35], who took as their point of departure the
temperature-time equivalence hypothesis originally proposed by
Leaderman [36] and subsequently introduced in a slightly differ-
ent form by Ferri [37]. According to this postulate the
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mechanical response of the material 1s affected by a uniform
temperature change only within a uniform change of the time scale;
the response is uniformly accelerated or slowed down depending on
whether the temperature is increased or lowered. Materials obey-
ing the temperature-time equivalence postulate are said to be
"thermo-rheologically simple" in the terminology of Schwarzl and
Staverman [38] who, in their expository article [39], cite experi-
mental evidence in support of the postulate, which éppears to be
in remarkably good agreement with tests performed on a variety of
high polymers over considerable temperature ranges. The
analytical framework developed in [35] was further explored in
[40].

We proceed now to a brief resumé of the theory of thermo-
rheologically simple viscoelastic solids and in this connection
consider first the required generalization of the relaxation
integral law (2.6). Thus, let GB(t) (p=1,2) henceforth denote
the values of the relaxation modull at time t measured at the base
temperature '1'o and denote by%s(t,’l‘) the corresponding values

measured at the (fixed) temperature T. Consequently

Gp(t,T,) = Gy() (p=1,2). (5.1)

The temperature-time equivalence hypothesis may then be expressed
analytically by

SB(tJT) = G‘g(i), £ = t?(T) for (tJT) in ('°°o°°)"[T1:T2]: (5-2)

where [Tl’Té] 1s the temperature range for which the postulate of
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thermo~rheologically simple behavior 1s presumed to hold. Here
E is the "reduced time", while ¢ represents the characteristic
"shift function" of the material, which governs the contraction
(or the stretching) of the time scale that results from the
temperature change T-To. Clearly,

*(T) =1, 9(T) >0 (T <TLT,) (5.3)

and ¢ is evidently a steadilly increasing function.

The constitutive law (2.6) must &t present be confined
in 1ts validity to a material that is permanently maintained at
the uniform temperature To‘ In these circumstances one gathers
from (2.6) on setting ©=0, recalling (2.7), and making use of the
commutativity of Stieltjes convolutions, that

t «
syymt) = [ 0 (s-t1)dey (x,t1),
e - (5.4)
SaclZet) = [ Gy(e-tt)ae, (x,t1).
tt=-00 -

If the material is instead permanently at the uniform temperature
T, the values GB(t-t') in (5.4) — according to (5.2) — are to

be replaced by GB(E-E'), where E'=t'¢(T). If, finally, the
material is under the influence of a variable (time and position-
dependent) temperature distribution T with values in [Tl’Tal’

(5.4) are in need of a two-fold additional amendment: first, the
definition of the reduced time  must now be generalized to account

for the cumulative effect of successive temperature changes;
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second, one must allow once again for the influence of thermal

expansion. This leads to the modified relaxation integral law

t
5y 4(zst) = j 0 (E-E')de, ,(x,t1),
tl=-00
t t
oe®t) = [ GEENde (xt) -3 [ G518z t1),
ti=-c0 tl=-c0
(5.5)
with £
€ =plxt) = [ o(Mxt1))atr, g1 = p(x,81).  (5.6)%2
0

We note that the temperature enters (5.5) both through
© and through E,E*, In contrast to (2.6), the stress-strain
relations (5.5) imply a nonlinear dependence of the local instan-
taneous stresses upon the local temperature history. It is
apparent from (5.6),(5.3) that p(x,+) is a monotone increasing
function of the time on (-0, ), the inverse of which we denote

by w(x,+), whence

t = w(x,E). (5.7)

If £ 18 a functlion of position and time, we shall consistently
write f for the function defined by

£(x,€) = £(x,0(x,8)). (5.8)

2 Although this generalization of the reduced time, introduced
in [3?%, is convincing on physical grounds, a rigorous deduc-
tion of (5.5) from (5.4) and the temperature-time equivalence
postulateg appears to be lacking.
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By subjecting the variable of integration in (5.5) to the trans-
formation tt=w(x,£') one may eliminate from (5.5) any explicit
dependence upon the physical time in favor of the reduced time.
In this manner, using the notations adopted in (2.7),(5.8) and
involking once more the commutativity of Stieltjes convolutions,
one arrives at the followlng particularly convenient version of
the modified relaxation integral law:

313 = éi;fdGl

Gkk = (&, -3a0)*dG, (5.9)

kk 2

As is apparent from (5.8), the convolutions in (5.9) are taken
with respect to the reduced time rather than the physical time.

We note that (5.9) have otherwise the same structure as (2.6).

Strictly analogous considerations apply to the generalli-

zation of (2.20) and ultimately lead to the modified creep integral
law in the form

eiJ = siJ*dJl’
(5.10)

a
€

e okkafdJe + 3a0,

which may also be deduced directly from (5.9). Finally, the
same procass of speclalization that leads from the integral laws

(2.6) or (2.20) to (2.30) now furnishes the modificd differential

operator law

P (D)8, = (D)8, 0 BBy = QDIE,-36],  (5.11)

where ﬁ 1s the reduced-time derivative operator, i.e.
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5 =3, (5.12)

while the polynomial operators Pﬁ’Qﬁ (B=1,2) retain their previous
meaning. To (5.11) one must adjoin the initial conditions (2.32),
which remain unaltered.

On referring (5.11) to the physical time t by means of
(5.6),(5.7),(5.8), one 1s evidently led to a pair of differential
equations which has the same structure as (2.30), except that the
breviously constant response parameters pﬁin’qﬁin are now functions
of the temperature. It 1s also clear that these functions cannot
be prescribed independently for a thermo-rheologically simple
viscoelastic s0lid since the entire temperature-dependence of
such a so0lid is governed by the single shift function ¢. More-
over, an arbltrary disposition over the temperature-dependence of
the response parameters in (2.30) is not only incompatible with
the temperature-time equivalence hypothesis but is also readlly
seen to be inadmissible on energetic grounds.

The implications of the equivalence postulate for elastic,
Maxwell, and Kelvin solids were examined in [40]. As is at once
apparent from (2.15), elastic materials with temperature depend-
ent moduli do not belong to the class of thermo-rheologlcally
simple viscoelastic solids. On the other hand, the shear response
of a thermo-rheologically simple Maxwell solid is found to be

characterized by

. 1 . .
844 + = 8y = 2p.e1J ’ (5.13)
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in which p and T are the shear modulus and the relaxation time of
the solld; whereas p remains constant in the present instance,

T obeys

(1) = ¥y (B, ST, T = (D), (5.14)

and is thus a monotone decreasing function of the temperature.
Analogous conclusions apply to the dilatational response and to
sollds of the Kelvin type. It 1s interesting to note that the
ad-hoc assumptions regarding the temperature-independence of
certain response parameters made in [26] to [33] are in fact
preclse consequences of the temperature-time equivalence
hypothesis. Before leaving the present subject we observe that,
as pointed out by Lee and Rogers [41], the shortcomings of the
differential operator law (i.e. of finite-spectrum models) are
apt to be even more pronounced once the (thermo-rheologically
simple) temperature dependence of the material is taken into
account, in view of the concomitant contraction of the time scale.
We are now in a posltion to state the standard mixed
boundary-value problem in the quasi-static linear theory of
thermo-rheologically simple viscoelastic solids. A formulation

based on the modified relaxation integral law may be phrased as

follows. One 18 to find field hilstories ui,eiJ,diJ which — for
b b
given R’Bl’Ba’ known Gi’Gé’a’IB’v’ and prescribed Fi’T’ui’Si —_

satisty (2.1),(2.2),(2.3),(2.4),(5.5),(5.6) on @x(-c0,0) and

meet the initial conditions (2.8), as well as the boundary condi-
tions (2.9). This problem suggests the subsequent generalization
of the definition of a viscoelastic state introduced in Section 2.
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Thermo-rheologically simple viscoelastic state. We say that

[uy,ey 4291 J] belongs to the class of thermo-rheologically simple

viscoelastic states on R%(-00, 00) corresponding to the data

“1:GQ:G:TO:¢»F1:T for the temperature range [Tl,Tal,uand write

[ui’eij’dij]ea’[Gl’GQ’a’To’q,’Fi’T] on Rx(-00, c0) (5.15)

(a) Gi'aé’“1'€13'°13' and F, meet requirements (a),(b) in the

definition of a viscoelastic state;

(b) ¢ is continuous on [T,T,] and obeys (5.3);
(e) T=T_ on Rx(-0,0), is continuous on Rx[0, ), and has

values in [Tl,T 1;
(d) equations (2.1),(2.2),(2.3),(2.4),(5.5),(5. 6) hold on

Rx( -0, ),

Evidently, (5.15) in conjunction with ¢(T)=1 for T in

[Tl’T2] implies (2.10), whence this specialization of the shift
function ¢ yilelds a reduction of the present theory to the theory
of temperature-independent materials treated in the preceding

sections.

6. Implications of thermo-rheologically simple behavior,
applications.

Our current objective is the compillation of a few
general conclusions pertaining to the theory of thermo-rheological-
ly simple viscoelastic solids. Most of the theorems about to be

cited are extensions of, and upon the appropriate specialization
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of ¢ reduce to, analogous propositions in Section 3. We state
first the

Uniqueness theorem. Suppose

[uiae J"dijle Jla l" 2: a,T :‘P:FIJT] on Rx('°°:°°)

(6.1)
tot '
[ui:eid:dijleJ[Glaa’asa:To:cP:FioT] on RX(-00, c0)
and let
' '
w, =u, on le(-oo,oo), S, =8, on BQX(-oo, )., (6.2)
Then

[ui’eij"dijl = [u.’:.’e;.,j’d;.:]] + [Wi,0,0] on Rx(-oo, °°):(6-3)

where w,=0 on Rx(-0,0) and w, represents an (infinitesimal) rigid

motion of the entire body on Rx[0, o).

This result is implied by a more inclusive uniqueness
theorem established in [42], the latter being applicable also to
ablating viscoelastic solids, It 1s Interesting to observe that
no restrictions on the shift function ¢, beyond continuity and
(5.3), are needed to assure uniqueness in the present circumstances.
The next theorem may be inferred directly from the definitions of
statlonary elastic and thermo~-rheoclogically simple viscoelastic

states with the aid of (5.8),(5.9), and Theorem 1.2 in [1].

Initial response. Let [ui’eij’dij] meet (5.15). Then

o o
[ui,eij,dij]éﬁ[p.,x a, F s©] on R (6.4%)

with
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o)

)
p o= % G, % = % a,. (6.5)

Consequently the inltial state is sgain a stationary
elastic state and may be found directly from the initial field
and surface data. We turn now to a propostion which follows from

a result cited23 in Section 3.

Volume change. Let [ui,eiJ,diJ] meet (5.15) and suppose

G, = 3xh on (- 0, o), (6.6)

where x 18 a constant (elastic dilatational response). Then the
volume change is given by (3.17),(3.19).

The subsequent result was deduced in [6] and extends an

earlier observation due to Hilton [9].

Stress-free temperature field histories. Assume (5.15) holds and

suppose S,=0 on Bx[0, c0), F,=0 on RX[0, ). Then o, 4=0 on
Rx(-co0, ) if and only if

e(x,t) = a_(t) + a,(t)x; for (x,t) in Rx[0,), (6.7)
where a _,a, are functions continuous on [0,00).

Related theorems concerning stress-free temperature
fields, applicable to plane strain and generalized plane stress,
are given in [6], where the two-dimensional theory of thermo-

rheologically simple viscoelastic solids 1s explored in some

detail. The two-dimensional considerations in [6] also led to a

23 See the remarks following (3.19).
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connection between the plane-strain and the generalized plane-
stress solution associated with one and the same plane problem.24

The chief analytical complications introduced by the
departure from temperature-independent viscoelastic behavior arise
in the actual solution of boundary-value problems. Unforturately,
the theory of integration presented in Section 4 does not admit a
useful extension to thermo-rheologically simple viscoelastlic media.
This 1s true in particular of the powerful correspondence principle
discussed at the end of Section 4, which yields a reduction of the
viscoelasticity problem (for a solid with a temperature-independent
response) to a problem in steady-state thermoelasticity theory.

To bring the difficulty to which we have Jjust alluded
into focus, we observe first that the integrals appearing in the
modified relaxation law (5.5) are no longer of the convolution
type. Consequently, an application of the Laplace transform
(with respect to the physical time) to (5.5) fails to furnish
algebraic stress-strain relations in the transform domain. The
alternative version (5.9) of the modified relaxation law, which
has the requisite convolution structure, suggests the possibility
of referring also the remaining field equations, as well as the
boundary conditions, to the new independent variables (x,£) with
a view toward a subsequent elimination of the reduced time by
means of the Laplace transform. Such a procedure in general does

not result in a worthwhile simplification of the problem. Indeed,

2% For the analogous connection in two-dimenslonal thermoelasticity

theory, see Mindlin and Salvadori [43], p.T762.
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let us use (5.6),(5.8) to effect the proposed change of variables
and let us agree to write %,1 and %' for the space derivatives
and for the reduced-time derivative of a function f of position
and of the reduced time. Then the displacement-straln relations

(2.1) become
"~ - l A A~ -]; A A
By 7 5008, gy,0) + 500 g5 ) (6.8)

whereas the stress equations of equilibrium (2.2) pass over into

d + 3 +§‘ = 8 =38,,. .

15,5 ¥ O1gP,g ¥ F1 = 0 Gy = Oy (6.9)

Because of the terms involving p ,, the transforms of (6.8),(6.9)

(taken with respect to the reduced time) no longer possess the

desired structure of (2.1),(2.2), unless p 4 vanishes. Such will
E

be the case, as 1s clear from (5.6), if T 1s a function of the

time alona. In this special event one 1s accordingly led to a
significant generalization of the correspondence principle. To
avoid unduly cumbersome notation in the subsequent statement of
this extension we shall write
o0
F(xm) = [ F(xE)exp(-ng)d (6.10)

0
for the Laplace transform with respect to the reduced time of a

function £ with values £(x,).

Correspondence principle for purely time-dependent temperature

histories. Suppose

[ui,e“,did]E;JIGl,Gz,a,To,qa,Fi,T] on Rx(-c0, ), (6.11)
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with T a function of the time alone, and let

b
u = us on ByX(-oc0, ), §; = sg on Byx(~co, ). (6.12)

Assume that Gg(£) (B=1,2), ©,(x,8),&,,(x,8),F, (x,8), and (),
for every x in R, are all of the exponential order O(exp(s £)) as

£ —> co, where 50.12”2 (real) constant. Then, for each n with

Re(q) > 849

[ai( "“)’513( "")’813( ':fl) JE& [P(ﬂ):“(ﬂ):asﬁi( ':ﬂ):é(ﬂ) 1 on R,
(6.13)

where

1,(n), (6.14)

wij+

p(n) =5 18 (n), x(n) =

and further
'ai(':'l) = ﬁti’(-:fl) on Bl.v gi(':f]) = §}1)(-,'q) on B2' (6.15)

The preceding analogy becomes trivial if B=B2, F1=O on
Rx(- 00, o), and §,=0 on Bx(-c0,c0). In this instance the analogy
merely confirms our previous conclusion®? that diJ=O on Rx(-00, ),
in view of the well-known theorem on stress-free temperature fields
in thermoelasticity theory ([3], Art. 3.9).

Suppose next that fof non-negative time the temperature
T, 1s a function of position alone. In this second degenerate
case the modified relaxation integral law (5.5) may once again

be written in terms of conveclutions with respect to the physical

tims, as 1s apparent from (5.6). In fact one now has

25 Note that © conforms to (6.7) since T 18 at present independent
of positlon.
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Byy = Hl-).edeid, O = H2*d(ekk-3aa), (6.16)

provided

HB(_JS:t)

Upon taking the Laplace transform of (6.16) one finds that

Ga(te(T(x))) for (x,t) in Rx[0, o), (6.17)

8y 4(xs0) = zu(zm)’é“(ﬂ_c, M,
(6.18)

Ekk(.’ii 1) 3x(x, 1) [-Ekk(-}s’ ﬂ)'3€f@(§, n) ]

for each fixed 1 with a sufficiently large real part and for all
x in R, 1if

p(x0) = 3 F (x,0), %(x,n) = %nﬁa(z,n). (6.19)

But (6.18) are the stress-strain relations appropriate to an

inhomogeneous linear elastic solid. Consequently, if the tempera-

ture depends on position alone, the original boundary-value

problem in thermo-viscoelasticity theory is reducible to a steady-

state thermoelastic problem for an inhomogeneous medium. Unhappily,

this generalization of the correspondence principle is of very
limited practical interest since the complexity of the reduced
problem is apt to be comparable to that of the original one.

For the differentlial operator law an analogous extension
of the correspondence principle to temperature-dependent materials
was glven earlier by Hilton and Russel [44] in a paper which is
based on thelr previous report [20] with Haesan. The analysis in
[44] 18 confined to differential operator laws with temperature-

dependent material parameters and thus presupposes a medium with
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a finite relaxation or retardation spectrum. The analogy deduced
in [44] for purely time-dependent temperature distributions is
limited to mechanically incompressible solids (although thermal
expansion 1s included) and is an extension of Alfreyts [15]

26 On the other hand, no restriction is placed in [44]

principle.
on the linear viscoelastic volumetric response for the case of a
purely position-dependent temperature field; the correspondence
princliple obtained in this instance is an elementary generalization
of Read!s [17] work in the isothermal theory. Finally, [44] con-
tains a sketch of an approximative approach to the general case

of a position and time-dependent temperature field history, based
on the assumption that the material may be regarded as stepwise
temperature-independent (in time). The extent to which such an
approximation scheme 1s computationally feasible remains to be
asgessed.

We turn now to avallable applications of the quasi-
static linear theory of thermo-rheologically simple viscoelastic
solids. As was mentioned before, all but one of the special in-
vestigations listed at the beginning of Section 5 are based on
temperature-dependent viscoelastic models that fall within this
catezory, although the problems treated were not intentionally

selected to 1llustrate the general theory under present consider-

ation,

20 In connaction with this extension of Alfreyt!s scheme the authors

remark that the effect of body forces and surface tractlions may
be determined separately from, and may be superposed upon, the
ensulng thermal stresses and deformations. Such a superposition
18 in fact not permissible for a temperature-dependent material.
Indeed, as has been pointed out already, a purely time-depend-
ent temperature field would, in the absence of loads, always
induce vanishing thermal stresses.
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The temperature-time equivalence hypothesis was applied..
by Morland and Lee [35] to the plane-strain analysis of an
incompressible hollow éircular cylinder which is exposed to a
stationary radial distridbution of temperature and is subjected
to a suddenly applied uniférm internal pressure.

Implications of the theory in circumstances that involve
temperature distributions depending on both position and time were
studied in [40], which contains exact solutions to two space
problems of this type. The first of these concerns an infinite
8lab which, in the absence of loads, is confined to a purely
transverse motion, the stress-inducing temperature field history
being permitted to vary arbitrarily with the thickness coordinate
and the time. The second problem aims at the thermal stresses
and deformations generated in a sphere by an arbitrary transient
radial temperature distribution. Both solutions accommodate an
unrestricted (thermo-rheologically simple) temperature dependence
of the material and apply to solids with a continuous relaxation
spectrum, except that in the second problem the volumetric response
is assumed to be elastic.27

We return here briefly to the example of the slab

treated in [40] since certaln aspects of this problem have a

27 Although this assumptlon, which is common in the stress analysic
of viscoelastic solids, 1s in general agreement with experimental
findings, the available quantitatlive information regarding
volumetric viscosity effects appears to be inadequate.
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wider significance. Thus consider an infinite plate of constant
thickness 2a and choose the coordinate frame in such a way that
x3=o coincides with the middle plane of the plate. Then R is

the reglon characterized by -a X3 L2 and B consists of the

palr of bounding planes xsqia. We now seek a thermo-rheologically
simple viscoelastic state2d [ui’eij’dij] on Rx(- oo, o) correspond-
ing to the data Gi,Gé,a,Tb,v,Fi,T, subject to the boundary condi-
tions

93y =0 on Bx(~ 0o, 00) . (6.20)

We assume further that T, ug are functions of (x3,t) alone and
F,=u; =u, =0 on Rx(-0c0,00). (6.21)

The foregoing constraining assumptions are consistent with the
governing field equations and boundary conditions, which at
present are readily found to imply>’ that all field histories
depend solely on (x3,t), while

= =0, €,, = 0 (1)) on RX(-o0, ), (6.22)

€11 = €22 13

631 = 9pps 933 = 05 954 =0 (1#3) on Rx(-oco0, c0), (6.23)

whereas

20 Note that, contrary to our prévious assumption, R 1is not
bounded in this instance.

29 gee [40] for details.
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6 = -E*dG.

1 26 = (§-3aé)*d02 on ®x (- 00, c0), (6.24)

if we conveniently write ¢ and € for 611 and e33, respectively.

The elimination of £ among the pair of integral equa-
tions (6.24), in view of the algebra of Stieltjes convolutions
(Section 1 in [1]), now leads to

8 = -30A%d on RX(-00,00), (6.25)

where A is the auxillary response function defined by

A= Gl*dezg(aal+ea)'l on (=00, c0), (6.26)3°
Bearing in mind (2.7),(5.6),(5.7),(5.8), and putting X3=X, we
draw from (6.25) that the desired stress 0=0,,=0,, admits the
Integral representation

t
6(x,t) = -3a j A{E-E1)d®(x,t1) for (x,t) in Rx(-co,0), (6.27)

=00
with "
£ =p(xt) = [ o(T(x,61))at?, €1 = p(x,81)., (6.28)

0
Moreover, (6.26), by virtue of Theorems 1.2, 1.3 in [1], for ¢

in [0, ) 18 equivalent to
t
o . N 31
GA(t) + f G(t-t1)A(t1)dt! = L(t), (6.29)
0
where

30 The same response function is also found to play a cruclal
role in the problem of the sphere [40].

31 Recall (2.13).
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t
a(t) = 2G1(t)+G2(t), L(t) = 3201(1:) +f Gl(t-t')éz(t')dt',
0 (6.30)

so that A satisfies a linear integral equation of Volterra's
second type. Finally, if the requlsite Laplace transforms exist,

(6.29) and (6.30) furnish
X(n) = G (n)T8y(n) .
2G, (n)+8,(n)

Formula (6.27) was obtained in [40] by applying the

(6.31)

Laplace transform to the pair of integral equations (6.24) and by
subsequently inverting the solution of the resulting pair of
algebralc equations. As was noted later by Lee and Rogers [41]
and 1s clear from the preceding derivation, there is no need to
involve the transform calculus, A similar observation 1s relevant
to the numerical evaluation of the solution under discussion,
which was carried out in [40] for a commercial polymethyl
methacrylate on the basis of-available relaxation data and test
results for the shift function ¢. In this connectlon the auxilliary
response function A was determined from (6.31). The laborious
procedure adopted in [40] consisted in first devising a convenient
analytical approximation to the relaxation data that permitted the
analytical computation of A; the required values of A were then
found with the aid of two asymptotic inversions — one applicable
to large, the other to small values of the time. In contrast, Lee
and Rogers [41] subsequently re-computed A by solving the integral

equation (6.29) directly on an electronic computer, Their
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procedure, which stays closer to the actually measured data, is
evidently more direct and also more accurate.

The values of A obtalned by the two altermative methods
described above are compared in Figure 1, in which E is Young's
modulus of the initial elastic response. Figure 2, which 1is
taken from [40], displays the time-dependence of the normal stress
¢ in the middlé plane of the slab for polymethyl methacrylate.

In the underlying computations it was assumed that az/k = 1 hour,
k being the thermal diffusivity of the materlal; this choice
corresponds to a slab thickness 2a of approximately 5.7 cm. The
temperature field history used in these calculations 1s that
supplied by the solution to an elementary transient heat-conduc-
tion problem: the entire slab is initlally at the uniform base
temperature To = 80°C and its faces at t=0 are suddenly ralsed to
the temperature T1=110°C, which 18 steadily maintalned thereafter.

Curve 1 in Figure 2 shows the stress values obtained
from (6.27). Curve 2 exhibits the behavior predicted if the
temperature-dependence of the response is disregarded and the
analysis is based on relaxation data appropriate to the average
surface temperature of 95°C. Curve 3, finally, shows the results
obtained if one neglects all viscosity effects as well and deter-
mines ¢ on the supposition of purely elastic behavior, using the
elastic constants characteristic of the initial viscoelastilc
response. As 18 apparent, the three curves almost coalesce for

an initial period of about 10 minutes, during which the "actual”
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response is nearly elastic and hence temperature-independent.

For approximately the first 20 minutes Curve 2 slightly under-
estimates the stress values predicted by Curve 1 since during this
stage the temperature of the middle plane is less than the average
temperature of 95°C and consequently the actual relaxation process
is slower than that underlying Curve 2. Later on, however,

Curve 2 progressively‘overestimates the stress values depicted by
Curve 1 until, after a two-hour period, the actual stress is less
than 15 per cent of the corresponding value in Curve 2. These
results demonstrate once again the unrealistic character of any
viscoelastic thermal-stress analysis that leaves out of account
the temperature-dependence of the material properties.

The relative merits of the direct numerical integration
of integral equations over the use of integral transform techniques
in viscoelastic stress analysils were further discussed and
illustrated by Lee and Rogers in [45]. Apart from the fact that
this approach makes more efficient uée of experimental data, it
obviates the need for long-time extrapolatlions from the data
beyond the time range which the desired solution of the problem
is to cover. Further, such a treatment extends the scope of the
analysis to problems which are not amenable to a Laplace-trans-
form solution. Among these are mixed problems 1n which the
surface tractions and displacements are prescribed over time-
dependent subsets of the boundary and problems in which the
boundary itself is a function of the time (surface ablation),
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An example of the latter type is dealt with numerically in [45],
where the solution to the problem of the sphere obtained in [40]
is generalized to accommodate an ablating spherical body. In
addition, [45] contains a formal solution to the problem of an
ablating sphefical shell; for fixed boundarles thls problem was
also treated previously in [6].

Although the develoﬁments Just described are promising,
i1t 1s well to keep in mind that boundary-value problems within
the theory under consideration are reducible to the solution of
independent integral equations only in highly exceptional
circumstances. Furthermore, all of the applications available to
date depend on the fortultous possibility that the required space
and time integrations can be carried out separately. While
certain less degenerate problems may nowadays be accessible to
a purely numerical treatment, such prospects should not detract

from the need for a systematic theory of integration.

7. Concluding remarks.
Throughout the preceding developments the material has

been considered to be isotropic with regard to both its mechanical

and its thermal response. For an anisotropic linear viscoelastic

material the constitutive relations (2.6) glve way to

044 = (eij'aije)*daijkﬂ’ (7.1)

in which GiJkZ and aiJ are the components of the tensor of
relaxation functions and of the thermal-expanslon tensor,

respectively. Furthermore, aJi =0y and
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Gy g8 = Ps1ic0 = G g (7.2)
The first of (7.2) follows from the symmetry of the stress tensor,
while the second entalls no loss in generallty because of the
symmetry of the straln tensor. In addition, it 1s usually
assumed that

Gijk£ = Gkﬁij' (7.3)

This last set of symmetry relations, which is implied by (7.2) in
the special case of isotropy, expresses an independent requirement.
The avallable theoretical support for the validity of (7.3)
depends on thermodynamic arguments involving an appeal to Onsager's
reciprocity relations.32

If (7.3) are presumed to hold, the generalization to
homogeneous anisotropic solids of most of the theoretical results
discussed in this paper, presents no difficulties. This is true,
in particular, of the correspondence principle discussed in
Section 4 and Section 6, which now leads to a tle between the
linear theorles of anisotropic viscoelastic and elastlic solids,
as suggested by Biot [49]. An extension of this principle to
inhomogeneous (1sotropic or anisotropic) viscoelastic sclids is

equally elementary,33 though of little practical consequence.

32 See, for example, Biot [46],[47]. A discussion of this issue
may be found in a recent note by Rogers and Pipkin [48], as
well as in [5]. Note that the counterpart of (7.3) in
elastlicity theory is implied by the existence of an elastic
potential.

33 In this connection see [20],[44]), as well as Hilton and
Dong [50]. -
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Next, we have so far considered only the quasi-static:
analysis of thermal stresses in viscoelastlc solids. Thermo-
viscoelastic lnertia effects have been the object of several
recent special investigations. Among these we cite publications
by Katasonov [51], Nowacki [23],(52],[53],[54], and Zorawski [55],
[561,(571,[58]. The physical éignificance of these investigations
‘18 diffiéult éo assess since they invarliably presuppose a tempera-
ture-independent material, do not include quantitative discussions
of the results obtained, and usually refer only to instantaneous
temperature changes.34

Further, nothing has been said as yet about thermo-
mechanical coupling effects, which have been consistentliy dis-

regarded. An interesting study of such effects is due to
Hunter [60], whose analysis is set within the framework of the
theory of thermo-rheologically simple viscoelastic solids. As
suggested by the unassuming title of [60], this subject is in
need of further consideration.

Finally, it may be well to emphasize once more that the
present paper 1s confined essentlally to linear thermal stress
analysis for viscoelastic solids. Thus no attention has been
given to the influence of nonlinear viscosity effects and to
finite deformations, which haunt the realistic treatment of

thermal stresses in metals at elevated temperatures,

Acknowledgment. The author is greatly indebted to M. E. Gurtin,
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3% Related studies in thermoelasticity theory (see, for example,
[591), indicate that the size of such inertia effects is
drastically reduced once the fiction of sudden temperature
changes 1s abandoned.
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(D Temperature-dependent response: T,=80°C, T =110°C

@ Temperature-independent response based on
behavior at 95°C

@ Elastic response based on initial behavior
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Fig.2 Slab problem. Time-dependence of o in middle
plane for polymethyl methacrylate



